Tags » Arithmetic Progression

Pentagonals (P(2), P(A), P(B)) in arithmetic progression

If , then



c. d. is the common difference
















c. d. =




c. d. =




c. d. =




c. d. =





c. d. =





c. d. 37 more words

Number Puzzles

Pentagonal numbers in Arithmetic progression

, ,

925 – 330 = 595 = 1520 – 925

, ,

1426 – 590 = 836 = 2262 – 1426

, ,

3015 – 1520 = 1495 = 4510 – 3015…

Triangular numbers in AP: T(b)-T(a)=T(c)-T(b)=T(d)

Triangular numbers in Arithmetic progression whose common difference is triangular:


for example,


………. ……….

………. ……….

………. ……….

………. ……….

………. ……….

………. ……….

………. ………. 60 more words

Number Puzzles

Five consecutive integers in arithmetic progression

200, 202, 204, 206, 208 are in arithmetic progression

with the property that if any digit is changed to any other digit, the resulting number is always composite. 128 more words

Number Puzzles

Sequences of 3-digit primes in arithmetic progression


3-digit prime numbers:

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997… 272 more words

Number Puzzles